Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.101
Filtrar
1.
J Biol Chem ; 300(3): 105743, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354786

RESUMO

The lysosome is an acid organelle that contains a variety of hydrolytic enzymes and plays a significant role in intracellular degradation to maintain cellular homeostasis. Genetic variants in lysosome-related genes can lead to severe congenital diseases, such as lysosomal storage diseases. In the present study, we investigated the impact of depleting lysosomal acid lipase A (LIPA), a lysosomal esterase that metabolizes esterified cholesterol or triglyceride, on lysosomal function. Under nutrient-rich conditions, LIPA gene KO (LIPAKO) cells exhibited impaired autophagy, whereas, under starved conditions, they showed normal autophagy. The cause underlying the differential autophagic activity was increased sensitivity of LIPAKO cells to ammonia, which was produced from l-glutamine in the medium. Further investigation revealed that ammonia did not affect upstream signals involved in autophagy induction, autophagosome-lysosome fusion, and hydrolytic enzyme activities in LIPAKO cells. On the other hand, LIPAKO cells showed defective lysosomal acidity upon ammonia loading. Microscopic analyses revealed that lysosomes of LIPAKO cells enlarged, whereas the amount of lysosomal proton pump V-ATPase did not proportionally increase. Since the enlargement of lysosomes in LIPAKO cells was not normalized under starved conditions, this is the primary change that occurred in the LIPAKO cells, and autophagy was affected by impaired lysosomal function under the specific conditions. These findings expand our comprehension of the pathogenesis of Wolman's disease, which is caused by a defect in the LIPA gene, and suggest that conditions, such as hyperlipidemia, may easily disrupt lysosomal functions.


Assuntos
Autofagia , Lipase , Lisossomos , Humanos , Amônia/metabolismo , Autofagia/fisiologia , Lipase/genética , Lipase/metabolismo , Lisossomos/química , Lisossomos/enzimologia , Doença de Wolman/enzimologia , Doença de Wolman/genética , Células HeLa , Concentração de Íons de Hidrogênio , Técnicas de Inativação de Genes
2.
J Biol Chem ; 299(12): 105473, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979916

RESUMO

Vacuolar H+-ATPases (V-ATPases) are highly conserved multisubunit enzymes that maintain the distinct pH of eukaryotic organelles. The integral membrane a-subunit is encoded by tissue- and organelle-specific isoforms, and its cytosolic N-terminal domain (aNT) modulates organelle-specific regulation and targeting of V-ATPases. Organelle membranes have specific phosphatidylinositol phosphate (PIP) lipid enrichment linked to maintenance of organelle pH. In yeast, the aNT domains of the two a-subunit isoforms bind PIP lipids enriched in the organelle membranes where they reside; these interactions affect activity and regulatory properties of the V-ATPases containing each isoform. Humans have four a-subunit isoforms, and we hypothesize that the aNT domains of these isoforms will also bind to specific PIP lipids. The a1 and a2 isoforms of human V-ATPase a-subunits are localized to endolysosomes and Golgi, respectively. We determined that bacterially expressed Hua1NT and Hua2NT bind specifically to endolysosomal PIP lipids PI(3)P and PI(3,5)P2 and Golgi enriched PI(4)P, respectively. Despite the lack of canonical PIP-binding sites, we identified potential binding sites in the HuaNT domains by sequence comparisons and existing subunit structures and models. We found that mutations at a similar location in the distal loops of both HuaNT isoforms compromise binding to their cognate PIP lipids, suggesting that these loops encode PIP specificity of the a-subunit isoforms. These data suggest a mechanism through which PIP lipid binding could stabilize and activate V-ATPases in distinct organelles.


Assuntos
Fosfatos de Fosfatidilinositol , Subunidades Proteicas , ATPases Vacuolares Próton-Translocadoras , Humanos , Sítios de Ligação , Endossomos/enzimologia , Endossomos/metabolismo , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Concentração de Íons de Hidrogênio , Lisossomos/enzimologia , Lisossomos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/metabolismo , Domínios Proteicos
3.
J Virol ; 97(12): e0133823, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38009916

RESUMO

IMPORTANCE: Betacoronaviruses, including severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and mouse hepatitis virus (MHV), exploit the lysosomal exocytosis pathway for egress. However, whether all betacoronaviruses members use the same pathway to exit cells remains unknown. Here, we demonstrated that porcine hemagglutinating encephalomyelitis virus (PHEV) egress occurs by Arl8b-dependent lysosomal exocytosis, a cellular egress mechanism shared by SARS-CoV-2 and MHV. Notably, PHEV acidifies lysosomes and activates lysosomal degradative enzymes, while SARS-CoV-2 and MHV deacidify lysosomes and limit the activation of lysosomal degradative enzymes. In addition, PHEV release depends on V-ATPase-mediated lysosomal pH. Furthermore, this is the first study to evaluate ßCoV using lysosome for spreading through the body, and we have found that lysosome played a critical role in PHEV neural transmission and brain damage caused by virus infection in the central nervous system. Taken together, different betacoronaviruses could disrupt lysosomal function differently to exit cells.


Assuntos
Betacoronavirus 1 , Infecções por Coronavirus , Exocitose , Lisossomos , Neurônios , Animais , Camundongos , Betacoronavirus 1/metabolismo , Lisossomos/enzimologia , Lisossomos/metabolismo , Lisossomos/virologia , Vírus da Hepatite Murina/metabolismo , Neurônios/enzimologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/virologia , SARS-CoV-2/metabolismo , Suínos/virologia , Concentração de Íons de Hidrogênio , ATPases Vacuolares Próton-Translocadoras/metabolismo , Infecções por Coronavirus/patologia , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia
4.
J Mol Biol ; 435(15): 168171, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285900

RESUMO

Carboxypeptidase E (CPE), an essential enzyme in the biosynthetic production line of most peptide hormones and neuropeptides, is predominantly expressed in endocrine tissues and in the nervous system. CPE is active in acidic environments where it cleaves the C'-terminal basic residues of peptide precursors to generate their bioactive form. Consequently, this highly conserved enzyme regulates numerous fundamental biological processes. Here, we combined live-cell microscopy and molecular analysis to examine the intracellular distribution and secretion dynamics of fluorescently tagged CPE. We show that, in non-endocrine cells, tagged-CPE is a soluble luminal protein that is efficiently exported from the ER via the Golgi apparatus to lysosomes. The C'-terminal conserved amphipathic helix serves as a lysosomal and secretory granule targeting and a secretion motif. Following secretion, CPE may be reinternalized into the lysosomes of neighboring cells.


Assuntos
Carboxipeptidase H , Lisossomos , Carboxipeptidase H/genética , Carboxipeptidase H/metabolismo , Complexo de Golgi/enzimologia , Lisossomos/enzimologia , Neuropeptídeos/metabolismo
5.
J Biol Chem ; 299(7): 104912, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37307916

RESUMO

α-synuclein (αS) is an abundant, neuronal protein that assembles into fibrillar pathological inclusions in a spectrum of neurodegenerative diseases that include Lewy body diseases (LBD) and Multiple System Atrophy (MSA). The cellular and regional distributions of pathological inclusions vary widely between different synucleinopathies contributing to the spectrum of clinical presentations. Extensive cleavage within the carboxy (C)-terminal region of αS is associated with inclusion formation, although the events leading to these modifications and the implications for pathobiology are of ongoing study. αS preformed fibrils can induce prion-like spread of αS pathology in both in vitro and animal models of disease. Using C truncation-specific antibodies, we demonstrated here that prion-like cellular uptake and processing of αS preformed fibrils resulted in two major cleavages at residues 103 and 114. A third cleavage product (122 αS) accumulated upon application of lysosomal protease inhibitors. In vitro, both 1-103 and 1-114 αS polymerized rapidly and extensively in isolation and in the presence of full-length αS. 1-103 αS also demonstrated more extensive aggregation when expressed in cultured cells. Furthermore, we used novel antibodies to αS cleaved at residue Glu114, to assess x-114 αS pathology in postmortem brain tissue from patients with LBD and MSA, as well as three different transgenic αS mouse models of prion-like induction. The distribution of x-114 αS pathology was distinct from that of overall αS pathology. These studies reveal the cellular formation and behavior of αS C-truncated at residues 114 and 103 as well as the disease dependent distribution of x-114 αS pathology.


Assuntos
Doença por Corpos de Lewy , Atrofia de Múltiplos Sistemas , alfa-Sinucleína , Animais , Camundongos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Camundongos Transgênicos , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Príons/química , Príons/metabolismo , Humanos , Lisossomos/enzimologia , Inibidores de Proteases , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Autopsia , Ácido Glutâmico/metabolismo
6.
J Cell Biol ; 222(6)2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37191899

RESUMO

Lysosomal hydrolases require an acidic lumen for their optimal activities. In this issue, two independent groups (Wu et al. 2023. J. Cell Biol.https://doi.org/10.1083/jcb.202208155; Zhang et al. 2023. J. Cell. Biol.https://doi.org/10.1083/jcb.202210063) report that hydrolase activation also requires high intralysosomal Cl-, which is established by the lysosomal Cl-/H+ exchanger ClC-7.


Assuntos
Canais de Cloreto , Cloretos , Hidrolases , Lisossomos , Lisossomos/enzimologia , Hidrolases/metabolismo , Canais de Cloreto/metabolismo
7.
J Mol Biol ; 435(12): 168023, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828270

RESUMO

Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most common risk gene associated with Parkinson's disease (PD) and Lewy Body Dementia. Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations across different genetic and sporadic forms of PD and related disorders, suggesting a broader role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in mechanistic characterization of glucocerebrosidase function as the foundation for development of novel therapeutics targeting glucocerebrosidase in PD and related disorders.


Assuntos
Glucosilceramidase , Doença de Parkinson , Humanos , alfa-Sinucleína/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Lisossomos/enzimologia , Mutação , Doença de Parkinson/enzimologia , Doença de Parkinson/genética
8.
Proc Natl Acad Sci U S A ; 119(39): e2117105119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122205

RESUMO

Mucins are functionally implicated in a range of human pathologies, including cystic fibrosis, influenza, bacterial endocarditis, gut dysbiosis, and cancer. These observations have motivated the study of mucin biosynthesis as well as the development of strategies for inhibition of mucin glycosylation. Mammalian pathways for mucin catabolism, however, have remained underexplored. The canonical view, derived from analysis of N-glycoproteins in human lysosomal storage disorders, is that glycan degradation and proteolysis occur sequentially. Here, we challenge this view by providing genetic and biochemical evidence supporting mammalian proteolysis of heavily O-glycosylated mucin domains without prior deglycosylation. Using activity screening coupled with mass spectrometry, we ascribed mucin-degrading activity in murine liver to the lysosomal protease cathepsin D. Glycoproteomics of substrates digested with purified human liver lysosomal cathepsin D provided direct evidence for proteolysis within densely O-glycosylated domains. Finally, knockout of cathepsin D in a murine model of the human lysosomal storage disorder neuronal ceroid lipofuscinosis 10 resulted in accumulation of mucins in liver-resident macrophages. Our findings imply that mucin-degrading activity is a component of endogenous pathways for glycoprotein catabolism in mammalian tissues.


Assuntos
Catepsina D , Lisossomos , Mucinas , Animais , Catepsina D/genética , Catepsina D/metabolismo , Glicoproteínas/metabolismo , Humanos , Lisossomos/enzimologia , Mamíferos/metabolismo , Camundongos , Mucinas/metabolismo , Polissacarídeos/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(33): e2203518119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939698

RESUMO

The mannose-6-phosphate (M6P) pathway is responsible for the transport of hydrolytic enzymes to lysosomes. N-acetylglucosamine-1-phosphotransferase (GNPT) catalyzes the first step of tagging these hydrolases with M6P, which when recognized by receptors in the Golgi diverts them to lysosomes. Genetic defects in the GNPT subunits, GNPTAB and GNPTG, cause the lysosomal storage diseases mucolipidosis types II and III. To better understand its function, we determined partial three-dimensional structures of the GNPT complex. The catalytic domain contains a deep cavity for binding of uridine diphosphate-N-acetylglucosamine, and the surrounding residues point to a one-step transfer mechanism. An isolated structure of the gamma subunit of GNPT reveals that it can bind to mannose-containing glycans in different configurations, suggesting that it may play a role in directing glycans into the active site. These findings may facilitate the development of therapies for lysosomal storage diseases.


Assuntos
Doenças por Armazenamento dos Lisossomos , Manosefosfatos , Mucolipidoses , Transferases (Outros Grupos de Fosfato Substituídos) , Domínio Catalítico , Humanos , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/enzimologia , Manosefosfatos/metabolismo , Mucolipidoses/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética
10.
Proc Natl Acad Sci U S A ; 119(29): e2200553119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858317

RESUMO

Loss of activity of the lysosomal glycosidase ß-glucocerebrosidase (GCase) causes the lysosomal storage disease Gaucher disease (GD) and has emerged as the greatest genetic risk factor for the development of both Parkinson disease (PD) and dementia with Lewy bodies. There is significant interest into how GCase dysfunction contributes to these diseases, however, progress toward a full understanding is complicated by presence of endogenous cellular factors that influence lysosomal GCase activity. Indeed, such factors are thought to contribute to the high degree of variable penetrance of GBA mutations among patients. Robust methods to quantitatively measure GCase activity within lysosomes are therefore needed to advance research in this area, as well as to develop clinical assays to monitor disease progression and assess GCase-directed therapeutics. Here, we report a selective fluorescence-quenched substrate, LysoFQ-GBA, which enables measuring endogenous levels of lysosomal GCase activity within living cells. LysoFQ-GBA is a sensitive tool for studying chemical or genetic perturbations of GCase activity using either fluorescence microscopy or flow cytometry. We validate the quantitative nature of measurements made with LysoFQ-GBA using various cell types and demonstrate that it accurately reports on both target engagement by GCase inhibitors and the GBA allele status of cells. Furthermore, through comparisons of GD, PD, and control patient-derived tissues, we show there is a close correlation in the lysosomal GCase activity within monocytes, neuronal progenitor cells, and neurons. Accordingly, analysis of clinical blood samples using LysoFQ-GBA may provide a surrogate marker of lysosomal GCase activity in neuronal tissue.


Assuntos
Doença de Gaucher , Glucosilceramidase , Doença de Parkinson , Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Glucosilceramidase/análise , Glucosilceramidase/genética , Humanos , Corpos de Lewy/enzimologia , Doença por Corpos de Lewy/enzimologia , Lisossomos/enzimologia , Mutação , Doença de Parkinson/enzimologia , Doença de Parkinson/genética , Especificidade por Substrato , alfa-Sinucleína/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(20): e2123261119, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35561222

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) senses amino acids to control cell growth, metabolism, and autophagy. Some amino acids signal to mTORC1 through the Rag GTPase, whereas glutamine and asparagine activate mTORC1 through a Rag GTPase-independent pathway. Here, we show that the lysosomal glutamine and asparagine transporter SNAT7 activates mTORC1 after extracellular protein, such as albumin, is macropinocytosed. The N terminus of SNAT7 forms nutrient-sensitive interaction with mTORC1 and regulates mTORC1 activation independently of the Rag GTPases. Depletion of SNAT7 inhibits albumin-induced mTORC1 lysosomal localization and subsequent activation. Moreover, SNAT7 is essential to sustain KRAS-driven pancreatic cancer cell growth through mTORC1. Thus, SNAT7 links glutamine and asparagine signaling from extracellular protein to mTORC1 independently of the Rag GTPases and is required for macropinocytosis-mediated mTORC1 activation and pancreatic cancer cell growth.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Pinocitose , Sistemas de Transporte de Aminoácidos Neutros/química , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Asparagina/metabolismo , Glutamina/metabolismo , Humanos , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transdução de Sinais
12.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163078

RESUMO

The present paper proposes a new level of regulation of programmed cell death (PCD) in developing systems based on epigenetics. We argue against the traditional view of PCD as an altruistic "cell suicide" activated by specific gene-encoded signals with the function of favoring the development of their neighboring progenitors to properly form embryonic organs. In contrast, we propose that signals and local tissue interactions responsible for growth and differentiation of the embryonic tissues generate domains where cells retain an epigenetic profile sensitive to DNA damage that results in its subsequent elimination in a fashion reminiscent of what happens with scaffolding at the end of the construction of a building. Canonical death genes, including Bcl-2 family members, caspases, and lysosomal proteases, would reflect the downstream molecular machinery that executes the dying process rather than being master cell death regulatory signals.


Assuntos
Caspases/metabolismo , Morte Celular , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Genes bcl-2 , Peptídeo Hidrolases/metabolismo , Animais , Caspases/genética , Diferenciação Celular , Lisossomos/enzimologia , Peptídeo Hidrolases/genética
13.
Protein Pept Lett ; 28(11): 1246-1258, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34931962

RESUMO

BACKGROUND: Metabolic and clinical disorders forming the complex of interrelated abnormalities is known as metabolic syndrome (METs). OBJECTIVE: Our goal was to assess the dependence of serum arylsulfatase (AS) and acid phosphatase (ACP) activities on anthropometric and biochemical parameters in patients with METs. METHODS: In 142 patients with METs (IDF criteria), consisting of different components in different sequences (hypertension, diabetes, lipid disorders), and in 65 healthy participants, basic biochemical parameters were determined in laboratory tests. The activity of serum hydrolases was determined using Bessey's (ACP) and Roy's (AS) methods. RESULTS: The AS activity is correlated with waist-to-hip ratio (WHR) (more strongly in women and in most advanced METs), BMI (in men), and triglycerides (TG) (in women, participants with I degree obesity, and those with three METs components). The ACP activity correlated with the WHR of patients with II degree obesity, TG in those with III degree of obesity, and total cholesterol (TC) in those with four METs components. CONCLUSION: Increased AS activity in patients with METs compared to lower AS activity in the control group may be due to decreased lysosomal function and related to the amount of adipose tissue. Low activity of ACP in the blood serum of patients with METs compared to high activity of ACP in the control group may indicate exhaustion of the lysosomal apparatus and loss of hydrolytic activity. The increase in TG and TC in groups with an increasing number of METs-defining components may be due to the abnormal lysosomal degradation of these compounds.


Assuntos
Fosfatase Ácida/sangue , Arilsulfatases/sangue , Lisossomos/enzimologia , Síndrome Metabólica/sangue , Estresse Oxidativo , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
14.
Curr Drug Metab ; 22(13): 1009-1016, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34791996

RESUMO

Antimalarial drugs from different classes have demonstrated anticancer effects in different types of cancer cells, but their complete mode of action in cancer remains unknown. Recently, several studies reported the important role of palmitoyl-protein thioesterase 1 (PPT1), a lysosomal enzyme, as the molecular target of chloroquine and its derivates in cancer. It was also found that PPT1 is overexpressed in different types of cancer, such as breast, colon, etc. Our group has found a synergistic interaction between antimalarial drugs, such as mefloquine, artesunate and chloroquine and antineoplastic drugs in breast cancer cells, but the mechanism of action was not determined. Here, we describe the importance of autophagy and lysosomal inhibitors in tumorigenesis and hypothesize that other antimalarial agents besides chloroquine could also interact with PPT1 and inhibit the mechanistic target of rapamycin (mTOR) signalling, an important pathway in cancer progression. We believe that PPT1 inhibition results in changes in the lysosomal metabolism that result in less accumulation of antineoplastic drugs in lysosomes, which increases the bioavailability of the antineoplastic agents. Taken together, these mechanisms help to explain the synergism of antimalarial and antineoplastic agents in cancer cells.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Lisossomos , Proteínas de Membrana/metabolismo , Neoplasias , Serina-Treonina Quinases TOR/metabolismo , Tioléster Hidrolases/metabolismo , Autofagia/efeitos dos fármacos , Disponibilidade Biológica , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Interações Medicamentosas , Sinergismo Farmacológico , Quimioterapia Combinada , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/enzimologia , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
PLoS Pathog ; 17(11): e1009820, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34807954

RESUMO

Interferons play a critical role in regulating host immune responses to SARS-CoV-2, but the interferon (IFN)-stimulated gene (ISG) effectors that inhibit SARS-CoV-2 are not well characterized. The IFN-inducible short isoform of human nuclear receptor coactivator 7 (NCOA7) inhibits endocytic virus entry, interacts with the vacuolar ATPase, and promotes endo-lysosomal vesicle acidification and lysosomal protease activity. Here, we used ectopic expression and gene knockout to demonstrate that NCOA7 inhibits infection by SARS-CoV-2 as well as by lentivirus particles pseudotyped with SARS-CoV-2 Spike in lung epithelial cells. Infection with the highly pathogenic, SARS-CoV-1 and MERS-CoV, or seasonal, HCoV-229E and HCoV-NL63, coronavirus Spike-pseudotyped viruses was also inhibited by NCOA7. Importantly, either overexpression of TMPRSS2, which promotes plasma membrane fusion versus endosomal fusion of SARS-CoV-2, or removal of Spike's polybasic furin cleavage site rendered SARS-CoV-2 less sensitive to NCOA7 restriction. Collectively, our data indicate that furin cleavage sensitizes SARS-CoV-2 Spike to the antiviral consequences of endosomal acidification by NCOA7, and suggest that the acquisition of furin cleavage may have favoured the co-option of cell surface TMPRSS proteases as a strategy to evade the suppressive effects of IFN-induced endo-lysosomal dysregulation on virus infection.


Assuntos
COVID-19/virologia , Furina/metabolismo , Coativadores de Receptor Nuclear/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Linhagem Celular , Endossomos/metabolismo , Furina/genética , Expressão Gênica , Humanos , Evasão da Resposta Imune , Interferons/metabolismo , Lisossomos/enzimologia , Coativadores de Receptor Nuclear/genética , Isoformas de Proteínas , Proteólise , Serina Endopeptidases/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Pseudotipagem Viral , Internalização do Vírus
16.
Angew Chem Int Ed Engl ; 60(52): 26994-27004, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34643312

RESUMO

Lysosome-relevant cell death induced by lysosomal membrane permeabilization (LMP) has recently attracted increasing attention. However, nearly no studies show that currently available LMP inducers can evoke immunogenic cell death (ICD) or convert immunologically cold tumors to hot. Herein, we report a LMP inducer named TPE-Py-pYK(TPP)pY, which can respond to alkaline phosphatase (ALP), leading to formation of nanoassembies along with fluorescence and singlet oxygen turn-on. TPE-Py-pYK(TPP)pY tends to accumulate in ALP-overexpressed cancer cell lysosomes as well as induce LMP and rupture of lysosomal membranes to massively evoke ICD. Such LMP-induced ICD effectively converts immunologically cold tumors to hot as evidenced by abundant CD8+ and CD4+ T cells infiltration into the cold tumors. Exposure of ALP-catalyzed nanoassemblies in cancer cell lysosomes to light further intensifies the processes of LMP, ICD and cold-to-hot tumor conversion. This work thus builds a new bridge between lysosome-relevant cell death and cancer immunotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Morte Celular Imunogênica/efeitos dos fármacos , Lisossomos/metabolismo , Neoplasias/tratamento farmacológico , Organofosfatos/uso terapêutico , Fosfatase Alcalina/metabolismo , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/efeitos da radiação , Linhagem Celular Tumoral , Desenho de Fármacos , Células HEK293 , Humanos , Radical Hidroxila/metabolismo , Membranas Intracelulares/metabolismo , Luz , Lisossomos/enzimologia , Camundongos , Organofosfatos/síntese química , Organofosfatos/metabolismo , Organofosfatos/efeitos da radiação , Permeabilidade/efeitos dos fármacos
17.
Antiviral Res ; 195: 105193, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34687820

RESUMO

Transient receptor potential mucolipin 2 and 3 (TRPML2 and TRPML3), as key channels in the endosomal-lysosomal system, are associated with many different cellular processes, including ion release, membrane trafficking and autophagy. In particular, they can also facilitate viral entry into host cells and enhance viral infection. We previously identified that two selective TRPML agonists, ML-SA1 and SN-2, that showed antiviral activities against dengue virus type 2 (DENV2) and Zika virus (ZIKV) in vitro, but their antiviral mechanisms are still elusive. Here, we reported that ML-SA1 could inhibit DENV2 replication by downregulating the expression of both TRPML2 and TRPML3, while the other TRPML activator, SN-2, suppressed DENV2 infection by reducing only TRPML3 expression. Consistently, the channel activities of both TRPML2 and TRPML3 were also found to be associated with the antiviral activity of ML-SA1 on DENV2 and ZIKV, but SN-2 relied only on TRPML3 channel activity. Further mechanistic experiments revealed that ML-SA1 and SN-2 decreased the expression of the late endosomal marker Rab7, dependent on TRPML2 and TRPML3, indicating that these two compounds likely inhibit viral infection by promoting vesicular trafficking from late endosomes to lysosomes and then accelerating lysosomal degradation of the virus. As expected, neither ML-SA1 nor SN-2 inhibited herpes simplex virus type I (HSV-1), whose entry is independent of the endolysosomal network. Together, our work reveals the antiviral mechanisms of ML-SA1 and SN-2 in targeting TRPML channels, possibly leading to the discovery of new drug candidates to inhibit endocytosed viruses.


Assuntos
Antivirais/farmacologia , Ftalimidas/farmacologia , Quinolinas/farmacologia , Canais de Potencial de Receptor Transitório/agonistas , Zika virus/efeitos dos fármacos , Células A549 , Animais , Autofagia , Chlorocebus aethiops , Endossomos/enzimologia , Endossomos/metabolismo , Humanos , Lisossomos/enzimologia , Lisossomos/metabolismo , Células Vero , Infecção por Zika virus/virologia
18.
J Enzyme Inhib Med Chem ; 36(1): 2068-2079, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34565280

RESUMO

Pompe disease is an inherited metabolic disorder due to the deficiency of the lysosomal acid α-glucosidase (GAA). The only approved treatment is enzyme replacement therapy with the recombinant enzyme (rhGAA). Further approaches like pharmacological chaperone therapy, based on the stabilising effect induced by small molecules on the target enzyme, could be a promising strategy. However, most known chaperones could be limited by their potential inhibitory effects on patient's enzymes. Here we report on the discovery of novel chaperones for rhGAA, L- and D-carnitine, and the related compound acetyl-D-carnitine. These drugs stabilise the enzyme at pH and temperature without inhibiting the activity and acted synergistically with active-site directed pharmacological chaperones. Remarkably, they enhanced by 4-fold the acid α-glucosidase activity in fibroblasts from three Pompe patients with added rhGAA. This synergistic effect of L-carnitine and rhGAA has the potential to be translated into improved therapeutic efficacy of ERT in Pompe disease.


Assuntos
Carnitina/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Lisossomos/efeitos dos fármacos , Chaperonas Moleculares/farmacologia , alfa-Glucosidases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Carnitina/química , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/química , Humanos , Lisossomos/enzimologia , Chaperonas Moleculares/química , Estrutura Molecular , Relação Estrutura-Atividade
19.
Biomolecules ; 11(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34356615

RESUMO

The gut epithelial barrier provides the first line of defense protecting the internal milieu from the environment. To circumvent the exposure to constant challenges such as pathogenic infections and commensal bacteria, epithelial and immune cells at the gut barrier require rapid and efficient means to dynamically sense and respond to stimuli. Numerous studies have highlighted the importance of proteolysis in maintaining homeostasis and adapting to the dynamic changes of the conditions in the gut environment. Primarily, proteolytic activities that are involved in immune regulation and inflammation have been examined in the context of the lysosome and inflammasome activation. Yet, the key to cellular and tissue proteostasis is the ubiquitin-proteasome system, which tightly regulates fundamental aspects of inflammatory signaling and protein quality control to provide rapid responses and protect from the accumulation of proteotoxic damage. In this review, we discuss proteasome-dependent regulation of the gut and highlight the pathophysiological consequences of the disarray of proteasomal control in the gut, in the context of aberrant inflammatory disorders and tumorigenesis.


Assuntos
Mucosa Intestinal , Complexo de Endopeptidases do Proteassoma , Proteólise , Transdução de Sinais/imunologia , Animais , Ativação Enzimática/imunologia , Humanos , Inflamação/enzimologia , Mucosa Intestinal/enzimologia , Mucosa Intestinal/imunologia , Lisossomos/enzimologia , Lisossomos/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Complexo de Endopeptidases do Proteassoma/metabolismo
20.
Mol Neurodegener ; 16(1): 51, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34344440

RESUMO

BACKGROUND: Progranulin loss-of-function mutations are linked to frontotemporal lobar degeneration with TDP-43 positive inclusions (FTLD-TDP-Pgrn). Progranulin (PGRN) is an intracellular and secreted pro-protein that is proteolytically cleaved into individual granulin peptides, which are increasingly thought to contribute to FTLD-TDP-Pgrn disease pathophysiology. Intracellular PGRN is processed into granulins in the endo-lysosomal compartments. Therefore, to better understand the conversion of intracellular PGRN into granulins, we systematically tested the ability of different classes of endo-lysosomal proteases to process PGRN at a range of pH setpoints. RESULTS: In vitro cleavage assays identified multiple enzymes that can process human PGRN into multi- and single-granulin fragments in a pH-dependent manner. We confirmed the role of cathepsin B and cathepsin L in PGRN processing and showed that these and several previously unidentified lysosomal proteases (cathepsins E, G, K, S and V) are able to process PGRN in distinctive, pH-dependent manners. In addition, we have demonstrated a new role for asparagine endopeptidase (AEP) in processing PGRN, with AEP having the unique ability to liberate granulin F from the pro-protein. Brain tissue from individuals with FTLD-TDP-Pgrn showed increased PGRN processing to granulin F and increased AEP activity in degenerating brain regions but not in regions unaffected by disease. CONCLUSIONS: This study demonstrates that multiple lysosomal proteases may work in concert to liberate multi-granulin fragments and granulins. It also implicates both AEP and granulin F in the neurobiology of FTLD-TDP-Pgrn. Modulating progranulin cleavage and granulin production may represent therapeutic strategies for FTLD-Pgrn and other progranulin-related diseases.


Assuntos
Degeneração Lobar Frontotemporal/enzimologia , Granulinas/metabolismo , Lisossomos/enzimologia , Peptídeo Hidrolases/metabolismo , Progranulinas/metabolismo , Linhagem Celular , Humanos , Neurônios/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...